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Abstract

This paper studies an online path selection problem and proposes online mech-
anisms for a network operator to sequentially update link prices. The aim is to
incentivize online-arriving agents to join the network and select paths in a man-
ner that maximizes the social welfare, which comprises both system profit and
the quality of service experienced by agents. Competitive analysis is adopted to
analyze the performance of the proposed online mechanism, whose best achiev-
able competitive ratio is 4. Sufficient and necessary conditions on a competitive
mechanism are established. Moreover, the performance limit of the celebrated
multiple-the-index pricing scheme is also analyzed.

1. Introduction

End-host path selection has become a critical component of network perfor-
mance and reliability in future Internet architectures [1, 2]. While traditional
path selection algorithms prioritize the path with the lowest latency or con-
gestion, research in the past two decades has shown the benefits of path-aware
path selection. This approach takes into account other factors such as the path’s
available bandwidth, traffic types, and QoS requirements. However, to the best
of our knowledge, theoretical research in this field has primarily focused on the
long-term equilibrium that is achieved in dynamic rate evolutions [2], while the
transient performance when the system starts is understudied. A well-designed
path selection policy is especially important at the beginning of a network ses-
sion, particularly when users remain in the system for an extended period. This
is because an effective initial path selection can eliminate the need for frequent
path switching, which can incur additional switching costs in dynamic path
selection policies and is undesirable according to the IETF [3]. By reducing
the frequency of path switching, a good path selection policy can help improve
network performance and reduce the likelihood of congestion or packet loss.
This gap highlights the need for a better understanding of how path-aware path
selection algorithms should be designed during the system’s initial stage.

In this work, we study the following transient scenario when users/agents
come sequentially to nodes/hosts in a zero-load network. Through the investi-
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gation of this scenario with the assumption that future agents will arrive in an
adversarial manner, the objective is to enhance the network’s ability to handle
the uncertainty of future network dynamics during the initial stage. We assume
agents are strategic, in that each of them holds an arbitrary valuation of allo-
cated resources, and may misreport her valuation to the network for her own
benefit. The valuation can be an indicator of the agent’s type. By considering
strategic behavior in the selection of paths, we aim to design path selection
mechanisms that are more efficient and effectively cater to the requirements of
both the network and its users. The network operator sets unit price of network
resources based on the network state such as available link/edge capacity and
path congestion, and the agent decides whether to join the network by compar-
ing her valuation with the lowest price among all feasible paths. After joining
the network, agents pay the price to the network operator for the network re-
sources consumed when their data are routed through the path selected. The
goal of the network operator is to maximize the social welfare, i.e., the total
valuation of agents in the network minus the dissatisfaction (e.g., packet loss
or delay experienced) caused by poor network states. In this work, the net-
work operator achieves the goal by sequentially setting proper prices for links
as an incentive for agents to use the network resources in a way that induces a
better network state, for example, a more balanced network load. In economic
mechanism design, such sequential pricing schemes are known as posted-price
mechanisms, which enjoy the desired property of being incentive-compatible,
i.e., agents are willing to report their true valuation.

Mechanism design for communication networks in the offline setting has been
studied in [4]. Price-of-anarchy (PoA), the ratio between the cost of an equi-
librium under decentralized decision making and that from the centralized cost
minimization, was the performance metric there. When agents arrive online, a
unified algorithmic framework for online resource allocation was proposed in [5].
Only the allocation of a single resource was considered, and the allocation of
multiple resources is notably harder [6]. Combinatorial auctions were studied
in [7], in which resources were packed into different bundles and priced bundle-
wise. Agents bid for bundles and consume the resources in the bundle won.
Additional resources are produced with polynomial or linear cost functions.

Online routing, as an independent problem, has been garnering research in-
terest from theoreticians since 90s. Since then, routing problems have been
conventionally classified into cost minimization and benefit maximization prob-
lems [8]. However, none of previous works considered the problem of maximizing
benefit while regulating the network state (in the form of link costs) as in this
work.

(Our contributions) We study how to design competitive online mecha-
nisms for path-aware path selection. In this work, the impact of congested links
on agents’ service degradation is reflected by the cost in proportion to the total
number of packets in the network. The cost grows to infinity and calls on the
use of the effective capacity concept newly introduced in this work. We derive
the sufficient and necessary conditions on the pricing mechanism to be compet-
itive, and show that these conditions relate the competitiveness of the proposed
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online mechanism to the existence of solutions to a differential equation with
two boundary conditions. The main technical contribution is to identify the
boundary conditions, especially the one on the right hand side, which relies on
finding the worst-case scenario. Apart from developing general conditions on
competitive online mechanisms, the performance of a celebrated pricing scheme,
multiple-the-index pricing [9], is studied and shown inferior to our design.

2. Problem Statement

Consider a packet-switched network that consists of E edges, where edge e is
endowed with capacity ce and the collection of all edges is denoted as E . Agents
are interested in transferring data between a source node and a destination
node. They arrive at the network one by one and request to route data through
a path that connects the source and destination nodes. There are N agents in
total, but the network operator does not know the value of N or the information
about future agents throughout time. Despite the lack of future information,
the network operator sets price for each link at the beginning and may update
the price according to the varying network state and the sequential arrival of
agents.

The ith agent carries the following information: the private valuation vi,
the average data rate ri, the source and destination node pair (si, ti). Upon
the arrival of agent i, she decides whether to join the network or not based on
her private valuation and the price charged by the network operator; if agent
i decides to join, she continues to decide how to route her data through the
network and generates packet flows along the route; otherwise, agent i leaves
the network. The packet flows follow a Poisson process with mean rate ri. Given
si and ti, there is a set of possible paths from si to ti denoted as Oi.

The routing decision of agent i is denoted as xi ∈ {0, 1}|Oi|; if xij = 1, then
the jth path is chosen to route the flow of agent i; if

∑
j∈Oi

xij = 0, it represents
that the agent chooses to leave the system. The sum of mean rates for all flows
passing through edge e is λe =

∑
i∈[N ] ri

∑
j∈Oi

δeijxij , where δ
e
ij = 1 indicates

that edge e is on the jth path in Oi, and δ
e
ij = 0 indicates the opposite. In this

work, each edge is modeled as an M/M/1 queue with arrival rate λe and service
rate ce, and the service quality degradation is quantified by the total number of
packets in the network

∑
e∈E f(ρe), where

f(ρe) =

{
ρe

1−ρe
, 0 ≤ ρe < 1,

∞, ρe ≥ 1,

and ρe = λe

ce
is the utilization of link e. It is well-accepted in queuing theory

that the number of packets in the network is positively related to the average
network delay and harms the service quality to some extent. Other typical
network state preferences, such as maximizing the minimum load, can also be
incorporated by enforcing different f ’s. In this regard, f can be viewed as a
regularizer of the network state.
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The utility of agent i is defined as her valuation minus the payment to
the network, and the utility of the network operator is defined as the total
payment collected from agents minus the total service quality degradation as
a result of link congestion. The social welfare of the network is defined as the
sum of agent utility and the network utility, and the payments are cancelled
out. If uncertainties about all future agents are resolved, i.e., the private and
public information of all agents {vi, ri,Oi}i∈[N ] is disclosed at the beginning,
to maximize the social welfare, the network operator just needs to solve the
following optimization problem:

max
x,ρ

∑
i∈[N ]

vi
∑
j∈Oi

xij − γ
∑
e∈E

f(ρe) (1)

s.t. ρece =
∑
i∈[N ]

ri
∑
j∈Oi

δeijxij ,∀e ∈ E , (pe)

∑
j∈Oi

xij ≤ 1,∀i ∈ [N ], (µi)

xij ∈ {0, 1},∀i ∈ [N ], j ∈ Oi, (2)

where γ is a tradeoff parameter between the total agent valuation and the con-
gestion effect. The sequence of all agents is called an instance. In the following,
without loss of generality, we set γ = 1. It is worth noting that, although pay-
ments are cancelled out in the social welfare, the payment rule is the key to an
effective pricing mechanism. We will show the important role it plays in influ-
encing agent decisions and quantify the requirement of a competitive payment
rule in Section 3.

Problem (1) is combinatorial and involves binary decision variables. Relaxing
the binary constraints in Eq. (2) to fractional ones xij ∈ [0, 1] leads to a convex
program whose dual problem is expressed as follows:

min
µ,p

∑
i∈[N ]

µi +
∑
e∈E

f∗(pece) (3)

s.t. µi ≥ vi − ri
∑
e∈E

δeijpe,∀i ∈ [N ], j ∈ Oi,

where f∗(y) = supρ∈[0,∞)[yρ− f(ρ)] =

{
(
√
y − 1)2, if y ≥ 1,

0, if y < 1.

Both Problem (1) and Problem (3) cannot be solved in the traditional of-
fline manner by the network operator because agent valuations are kept private
and other agent information is not known until the arrival. Our key idea of
dealing with this lack of information is twofold: (i) we design a sequence of

online dual variables {p(i)e }i∈{0}
⋃
[N ] to approximate the optimal offline dual so-

lution p∗e to Problem (3), and (ii) let the online dual variables guide the design
of feasible online primal decisions and then invoke weak duality to bound the
primal objective. The metric measuring the performance of online mechanisms
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is competitive ratio. An online mechanism is α-competitive if maxI
OPT(I)
ALG(I) ≤ α,

where OPT(I) and ALG(I) are the optimal objective value of Problem 1 and
the objective value produced by the online algorithm when facing instance I,
respectively. By definition, α ≥ 1 always holds, and the closer to 1 the better.

3. Major Results

Algorithm 1: Posted-Price Mechanism for Path Selection (PPM-PSϕ)

Input: ϕe, ρ
(0)
e = 0,∀e. Set i = 1.

while a new agent i arrives do

if ∃j ∈ Oi, vi ≥
∑

e δ
e
ijriϕe(ρ

(i−1)
e ) then

Agent i selects the min-cost path, i.e., set xiji = 1 with ji given
by:

ji = arg min
j∈Oi

∑
e

δeijriϕe(ρ
(i−1)
e ) (4)

If there is more than one solution to Eq. (4), choose one among
them with equal probability;

Update the link utilization: ρ
(i)
e ← ρ

(i−1)
e + ri

ce
,∀e ∈ {e|δeiji = 1};

else
The agent leaves;

end
i = i+ 1;

end

To facilitate the analysis, we make the following two assumptions [5, 6]. It
is important to note that designing competitive algorithms for the general case
is not feasible.

Assumption 1. Agents are rational in the sense that their valuations are upper
bounded

vi/ri ≤ p̄ for all i ∈ [N ]. (5)

We also assume that p̄ is known to the network operator.

Assumption 2. The rate ri is much smaller than the capacity of any link, i.e.,
ri ≪ ce,∀i ∈ [N ], e ∈ E.

The proposed algorithm PPM-PSϕ takes a carefully designed ϕ function as
input, which is called a pricing scheme and essentially a mapping from edge
utilization levels to edge prices. Whenever a new agent arrives, on each path
she may choose, a new edge price is presented to her according to ϕ and the
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current edge utilization. The agent compares her valuation with the price of
all possible paths and selects the one with the lowest price. The following
two theorems (Theorem 1 and 2) relate the existence of a competitive pricing
scheme with the existence of solutions to a differential equation with boundary
conditions. Theorem 1 provides sufficient conditions on a differential equation
for PPM-PSϕ (Eq. (6)) to be α-competitive.

Theorem 1 (Sufficiency). For any given α ≥ 1, PPM-PSϕ is α-competitive if
ϕ = (ϕe)∀e∈E and ϕe : [0, ρ̄e]→ R is an analytic and non-decreasing solution to
the following differential equation with boundary conditions:{(

1− (ceϕe)
−1/2

)
ϕ′e = α (ϕe − f ′/ce) ,

ϕe(0) =
1
ce
, ϕe(ρ̄e) ≥ p̄,

(6)

where ρ̄e is such that f ′(ρ̄e) = p̄ce.

Proof. According to the online primal-dual framework [10], there are three steps
to deriving the sufficient conditions for an α-competitive algorithm:

1. Primal and dual initialization: P0 and D0 are the primal and dual objec-
tive values before any agent joins.

2. Primal and dual incremental inequality: Pi − Pi−1 ≥ 1
α (Di −Di−1),∀i ∈

[N ]. Pi and Di are the primal and dual objective values after processing

the ith agent, i.e., Pi =
∑

i′≤i vi′
∑

j∈Oi
xi′j −

∑
e∈E f(ρ

(i)
e ) and Di =∑

i′≤i µi′ +
∑

e∈E f
∗(p

(i)
e ), where ρ

(i)
e is the utilization level of link e after

processing the ith agent, and p
(i)
e are the dual variable updated after

processing the ith agent.

3. Primal and dual feasibility: {xi}i∈[N ] are feasible for the primal problem,

and p
(N)
e is feasible for the dual problem.

By combining the above three steps, it is obvious that PN ≥ 1
αDN+P0− 1

αD0 ≥
1
αOPT + P0 − 1

αD0, which means an asymptotic competitive ratio of α. Next,
we shall continue our analysis step by step.

First, before any agent arrives, the primal objective P0 = 0 , and the dual

objective D0 =
∑

e∈E f
∗
e (p

(0)
e ce) ≥ 0, where the equality holds when p

(0)
e =

1
ce
. Let p

(i−1)
e = ϕe(ρ

(i−1)
e ) be a function of the utilization level ρ

(i−1)
e and

µi =
(
vi −

∑
e∈Ei

rip
(i−1)
e

)+

. With ϕe(0) = 1
ce
, we have P0 = D0. Notice

that the primal objective will increase only when an agent joins the network. If
the ith agent leaves, the primal objective remains the same, and we keep the

dual variables unchanged p
(i)
e = p

(i−1)
e , then the primal and dual incremental

inequality is automatically satisfied for the ith agent. If the ith agent joins,∑
j∈Oi

xij = 1. Define Ei as the edges that route the ith agent. The increment
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of the primal objective is

Pi − Pi−1 = vi −
∑
e∈Ei

[
f(ρ(i)e )− f(ρ(i−1)

e )
]

= µi +
∑
e∈Ei

rip
(i−1)
e −

∑
e∈Ei

[
f(ρ(i)e )− f(ρ(i−1)

e )
]
, (7)

where the last inequality follows from the way of selecting µi and pe, µi =

vi −
∑

e∈Ei
rip

(i−1)
e because vi ≥

∑
e∈Ei

rip
(i−1)
e when the item i is admitted.

Similarly, the increment of the dual objective is

Di −Di−1 = µi +
∑
e∈Ei

[
f∗(p(i)e ce)− f∗(p(i−1)

e ce)
]
. (8)

The primal and dual incremental inequality is implied by the following inequal-
ity:∑
e∈Ei

rip
(i−1)
e −

∑
e∈Ei

[
f(ρ(i)e )− f(ρ(i−1)

e )
]
+

(
1− 1

α

)
µi ≥

1

α

∑
e∈Ei

[
f∗(p(i)e ce)− f∗(p(i−1)

e ce)
]
.

(9)

Because µi ≥ 0, the inequality above is implied by∑
e∈Ei

rip
(i−1)
e −

∑
e∈Ei

[
f(ρ(i)e )− f(ρ(i−1)

e )
]
≥ 1

α

∑
e∈Ei

[
f∗(p(i)e ce)− f∗(p(i−1)

e ce)
]
,

which is further implied by the individual inequalities over links:

rip
(i−1)
e −

[
f(ρ(i)e )− f(ρ(i−1)

e )
]
≥ 1

α

[
f∗(p(i)e ce)− f∗(p(i−1)

e ce)
]
. (10)

By dividing ri = ce(ρ
(i)
e − ρ

(i−1)
e ) at both sides, we have ∀e ∈ Ei, p

(i−1)
e −

1
ce

f(ρ(i)
e )−f(ρ(i−1)

e )

ρ
(i)
e −ρ

(i−1)
e

≥ 1
α ·

f∗(p(i)
e ce)−f∗(p(i−1)

e ce)

(p
(i)
e −p

(i−1)
e )ce

· p
(i)
e −p(i−1)

e

ρ
(i)
e −ρ

(i−1)
e

. By Assumption 2, it is

equivalent to

ϕe

(
ρ(i−1)
e

)
− 1

ce
f ′e

(
ρ(i−1)
e

)
≥ 1

α
f∗

′
(ϕe(ρ

(i−1)
e )ce)ϕ

′
e(ρ

(i−1)
e ),

which implies Pi − Pi−1 ≥ 1
α (Di −Di−1). Thus, a sufficient condition for the

primal and dual incremental inequality is

ϕe (ρ)−
1

ce
f ′ (ρ) ≥ 1

α
f∗

′
(ϕe (ρ) ce)ϕ

′
e(ρ),∀ρ ∈ [0, 1). (11)

When ρ = 0, we have ϕe(0)− 1
ce
≥ 1

αf
∗′
(ϕe(0)ce)ϕ

′
e(0) =

1
α (1−

1√
ϕe(0)ce

)ϕ′e(0).

After factorization, we have (ϕe(0) +
√

ϕe(0)
ce
− ϕ

′
e(0)
α ) · (

√
ϕe(0) − 1√

ce
) ≥ 0. A

feasible solution is ϕe(0) =
1
ce
.
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To determine the appropriate right boundary condition, the first step is to
identify the maximum utilization possible for any link. Notice that, for any link
e, compared to the case where any routing path contains e and other links, it
is most likely that e reaches its maximum possible utilization when all agents
are routed by a path that only contains e and all agents are of the highest value
density p̄. An algorithm should ensure that any link’s maximum utilization will
not be too close to 1 so that the increase of its link cost is less than or equal
to the increase of the value collected from agents joined. Define the maximum
utilization as the effective utilization ρ̄e. From its definition, we know that
ρ̄e is the maximum ρ that satisfies p̄dx ≥ f ′(ρ)dxce , and f ′(ρ̄e) = p̄ce follows.
Moreover, when p̄ ≤ ϕe(ρ̄e), the algorithm avoids from exceeding the effective
utilization, because there is no agent with a value density vi

ri
> ϕe(ρ̄e) ≥ p̄.

Thus, to keep consistent with the effective utilization, we have ϕe(ρ̄e) ≥ p̄,
where ρ̄e = f ′−1(p̄ce) = f∗

′
(p̄ce). What remains is to construct the worst-

case instance and find the conditions on ϕe for the worst-case instance to be
competitive.

We have observed that any link reaches its effective utilization when it only
constitutes unit-length routing paths. Consider the following instance consisting
of two phases: In the first phase, for each link e, there come agents with value
density gradually increasing from 0 to p̄, and they all request link e. In the
second phase, for each link e, there come agents with value density of p̄− ϵ. In
both phases, the total demand for link e from agents with each value density is
larger than the link capacity ce. The offline optimal solution for this instance
only consists of agents in the second phase, and generates a social welfare of∑

e[(p̄ − ϵ)ρ̄ece − f(ρ̄e)] =
∑

e[f
∗(p̄ce) − ϵρ̄ece]. For PPM-PSϕ, agents in the

first phase will join until the utilization is ρ̄e, and those in the second phase

will leave, generating a welfare of
∑

e

[∫ ρ̄e

0
ceϕe(s)ds− f(ρ̄e)

]
. For ∀ρ ∈ [0, ρ̄e],

taking integral from 0 to ρ at both sides of Eq. (11), we have∫ ρ

0

ϕe(s)ds−
1

ce
(f(ρ)− f(0)) ≥ 1

αce
· (f∗(ϕe(ρ)ce)− f∗(ϕe(0)ce))

=
1

αce
· f∗(ϕe(ρ)ce). (12)

When ρ = ρ̄e, it follows from Eq. 12 that∫ ρ̄e

0

ceϕe(s)ds− f(ρ̄e) ≥
1

α
f∗(ϕe(ρ̄e)ce) >

1

α
[f∗(ϕe(ρ̄e)ce)− ϵρ̄ece].

It then follows from ϕe(ρ̄e) ≥ p̄ that PPM-PSϕ is α-competitive for the con-
structed worst-case instance.

Theorem 2 reinforces the significance of Eq. (6) by showing that the existence
of an α-competitive online mechanism is equivalent to the existence of a solution
to the integral version of Eq. (6).
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Theorem 2 (Necessity). For any α > 0, if there exists an α-competitive deter-
ministic online mechanism (not necessarily PPMs), then the integral version of
Eq. (6), namely, Eq. (12) with equality, has at least one solution.

Proof. The following observation is made: ∀ρe ≥ 0, f ′(ρe) ≥ f ′(0) = 1, a unit
increase of the utilization level of link e leads to c := f ′(ρe) ≥ 1 units in-
crease of the cost. Thus, for any online algorithms (containing the online run-
ning of the offline optimal algorithm), any agent that produces positive welfare

should satisfy vi ≥
∑

e δ
e
ij

∫ ρ(i−1)
e +rei

ρ
(i−1)
e

f ′(s)ds ≥
∑

e δ
e
ijr

e
i f

′(0) =
∑

e δ
e
ijr

e
i , where

rei = ri/ce, and without ambiguity, ρ
(i−1)
e is the utilization level of any online

algorithms before ith arrival in general, and j is the path chosen by the online
algorithm for agent i.

The discussion below is limited to deterministic algorithms. Consider the
case when the routing path sets of all agents contain only one available routing
path for each agent (|Oi| = 1,∀i), and all routing paths consist of only one link
e, ∀e ∈ E . Denote a group of agents with value density ν and total demand
cef

∗′
(νce) as Gν . Consider the following instance Ip indexed by p, p ∈ [0, p̄):

there come Gνs with ν increasing from 0 to p continuously. After that, there
comes Gν with ν = p − ϵ. The optimal solution is composed of all agents
in the last group of the instance Ip, i.e., group Gp−ϵ, and its welfare is (p −
ϵ)cef

∗′
((p−ϵ)ce)−f(f∗

′
((p−ϵ)ce)) = f∗((p−ϵ)ce). For the instance constructed

before, define the utilization of link e of any α-competitive online algorithm after
processing Gν as ψe(ν). The notation of ψe is slightly abused here, and the
corresponding online algorithm will be clear in the context. The following claim
is made: given any α-competitive algorithm, another online algorithm can be
found, which is at least α-competitive and incurs a ψe function with ψe(p̄) = ρ̄e
and ψe(

1
ce
) = 0. Such an algorithm can be found in the following way.

Because ψe(ν) denotes the allocation after processing group Gν in instance
Ip, it is non-negative, non-decreasing in ν, i.e., ψe(ν) ≥ ψe(

1
ce
) ≥ 0, for all

ν ∈ [ 1
ce
, p̄]. If ψe(

1
ce
) > 0, it means that agents with vi/ri ≤ 1

ce
will join, however,

an online algorithm that discourages those agents from joining will have a better

competitive ratio because those agents incur negative welfare (vi <
rif

′(0)
ce

= ri
ce
)

in the system, and thus there always exists a comparably competitive online
algorithm with ψe(

1
ce
) = 0. To find an algorithm with ψe(p̄) = ρ̄e, we separate

the cases when ψe(p̄) > ρ̄e and ψe(p̄) < ρ̄e. If ψe(p̄) > ρ̄e, we can always
construct an algorithm at least α-competitive by stopping the allocation right
before the utilization hits the effective utilization ρ̄e, because the increase of the
link costs after exceeding the effective utilization is greater than the increase
of the value; if ψe(p̄) < ρ̄e, we can always allocate the remaining ρ̄e − ψe(p̄) of
link e to Ip̄ and achieve a competitive ratio no worse than α. Thus, we find an
α-competitive algorithm with ψe(p̄) = ρ̄e and ψe(

1
ce
) = 0. Denote the output of

this algorithm as ALG. Given the α-competitiveness, the following inequality
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holds for ∀p ∈ (1/ce, p̄]:

ALG =

∫ p

1/ce

νcedψe(ν)− f(ψe(p)) ≥
1

α
OPT =

1

α
f∗((p− ϵ)ce). (13)

For any α-competitive online algorithm, there is a ψe that satisfies Eq. (14):{∫ p

1/ce
νdψe(ν)− 1

ce
f(ψe(p)) ≥ 1

αce
f∗(pce),∀p ∈ (1/ce, p̄)

ψe(
1
ce
) = 0, ψe(p̄) = ρ̄e.

(14)

It is shown in the following that there exists a strictly increasing solution ψe

to Eq. (14) with equality, in other words, we can find an α-competitive online
algorithm whose allocation function ψe for the instance Ip is strictly increasing.
Define ψe(ν) as the infimum over all feasible solutions to Eq. (14):

ψe(ν) = inf {ψe(ν)|ψe is non-decreasing and feasible for Eq. (14) } .

The infimum exists because it is evident that a feasible solution to Eq. (14)
is bounded from below.

Lemma 3. ψe is feasible for Eq. (14) with the equality holds and is strictly
increasing.

Proof. By the definition of ψe, it is the greatest lower bound of all feasible

ψes, and ψe(
1
ce
) = 0, ψe(p̄) = ρ̄e. Suppose that ψe is not a feasible solution to

Eq. (14), we have
∫ p̄

1/ce
νdψe(ν) − 1

ce
f(ψe(p̄)) <

1
αce

f∗(p̄ce). By integration by

parts, we have νψe(ν)

∣∣∣∣p̄
1/ce

−
∫ p̄

1/ce
ψe(ν)dν − 1

ce
f(ψe(p̄)) <

1
αce

f∗(p̄ce). We can

always push ψe down on interval ( 1
ce
, p̄) and ensure that it is still non-decreasing

until the new function ψ̃e is feasible again: νψ̃e(ν)

∣∣∣∣p̄
1/ce

−
∫ p̄

1/ce
ψ̃e(ν)dν− 1

ce
f(ψ̃e(p̄)) ≥

1
αce

f∗(p̄ce). It contradicts that ψe is the infimum. Thus, ψe is feasible.

Assume that there exists p ∈ ( 1
ce
, p̄) such that ψe satisfies Eq. (14) with a

strict inequality. Denote L(p) =
∫ p

1/ce
νdψe(ν)− 1

ce
f(ψe(p)), R(p) =

1
αce

f∗(pce).

It means that L(p) > R(p). Let p0 be the smallest among all such p. If we slightly
decrease ψe(p0), i.e., dψe(p0) = −δ < 0, then L(p0) and R(p0) changes by

∆L(p0) := p0dψe(p0)− 1
ce
f ′(ψe(p0))dψe(p0) = ( 1

ce
f ′(ψe(p0))−p0)δ,∆R(p0) = 0,

respectively. When δ is very small, it is likely that L(p0)+∆L(p0) ≥ R(p0) still
holds, and a new ψe with ψe(p0) = ψe(p0)− δ is also feasible, which contradicts
the definition that ψe is the infimum over all feasible solutions. Thus, ψe satisfies
Eq. (14) with equality.

Assume that there exists p ∈ ( 1
ce
, p̄) such that ψe is not strictly increasing on

[p, p̄]. It means that there exist p1, p2 ∈ [p, p̄] with p1 < p2 and ψe(p1) = ψe(p2).
In this case, L(p1) = L(p2) and R(p1) < R(p2), which contradicts that ψe

satisfies Eq. (14) with equality. Thus, ψe is strictly increasing.
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Because ψe is strictly increasing, its inverse function ψe
−1 exists. Construct

φe as follows: for any p ∈ ( 1
ce
, p̄), φe(ρ) = ψe

−1(ρ) = p,∀ρ ∈ (0, ρ̄e), φe(0) =
1
ce
,

φe(ρ̄e) = p̄. By replacing ν with φe(s) in Eq. (14), we have
∫ ρ

0
φe(s)ds− 1

ce
f(ρ) =

1
αce

f∗(φe(ρ)ce),∀ρ ∈ (0, ρ̄e), which shows that φe is a solution to Eq. (12) with
equality.

As a non-autonomous differential equation with singular boundary condi-
tions (ϕe(0) =

1
ce
), Eq. (6) is notoriously difficult to analyze. We resort to find

the smallest α such that a solution exists numerically, and show its logarithmic
growth w.r.t. p̄ in Figure 1(a). Here we provide more intuition on the relation-
ship between Eq. (6) and the smallest competitive ratio α. The two boundary
conditions require that the two end points (at origin and at the effective uti-
lization) have a minimum function value difference, so that the parameter α in
Eq. (6) must be lower bounded because it controls the increasing speed of ϕ.
An α too small will lead to an Eq. (6) with no solution. The following corollary
characterizes the performance limit of PPM-PSϕ when ϕ is analytic.

Corollary 4. For any analytic ϕ, the best competitive ratio achievable by PPM-PSϕ
is 4.

Proof. Assume that there exists a solution to Eq. (6) with α0. Because ϕe(y) is
analytic, we have

ϕ′e(0) = lim
y→0+

ϕ′e(y)

= lim
y→0+

α0

ϕe − 1
ce(1−y)2

1− (ceϕe)−1/2

(a)
= lim

y→0+
α0

ϕ′e − 2
ce(1−y)3

1
2c

−1/2
e ϕ

−3/2
e ϕ′e

(b)
= 2α0

ϕ′e(0)− 2/ce

c
−1/2
e ϕe(0)−3/2ϕ′e(0)

= 2α0
ϕ′e(0)− 2/ce
ceϕ′e(0)

.

Equality (a) follows from the L’Hôpital’s rule, and Equality (b) follows from the
continuity of ϕ′e and ϕe at y = 0. By multiplying the denominator at both sides,
we have ce(ϕ

′
e(0))

2 − 2α0ϕ
′
e(0) +

4α0

ce
= 0. The quadratic equation above should

have at least one real solution, leading to ∆ = 4α2
0−16α0 ≥ 0, and thus α0 ≥ 4.

In conclusion, the best competitive ratio achievable by PPM-PSϕ is 4.

3.1. Analysis of Multiple-The-Index Pricing

It is reported in [11] that the multiple-the-index (MTI) pricing scheme
achieves the optimal competitive ratio when the cost function is a power func-
tion or the marginal cost function is concave. Specifically, ϕe(ρ) = f ′(ρ) is the
optimal price function for f(ρ) = aργ+1, and ϕe(ρ) = f ′(2ρ) is optimal for cost
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functions with a concave marginal f ′. However, there is no competitive pric-
ing scheme in the existing literature for our case where the cost function has a
convex marginal but is not polynomial, and we cannot find an analytical solu-
tion to the differential equation in Theorem 1. Thus, it is of interest to study
how optimal pricing schemes for other cost functions, i.e., MTI pricing scheme,
works in our case. We find that it is very far from the optimal competitive ratio
achieved by Algorithm 1. The following theorem shows the performance limit
of the MTI pricing scheme.

Theorem 5. Given p̄, the minimum competitive ratio that any MTI pricing
scheme can achieve is given by:

α∗
MTI = max

e

2ke
k2e − 1

+
2ke
ke + 1

· (ke + 2)− (2ke + 1)ρ̄e
(1− keρ̄e)(2− (ke + 1)ρ̄e)

,

where ke is a solution to the cubic equation ρ̄2ek
3+(ρ̄2e−2ρ̄e−2)k+(4−2ρ̄e) = 0

and ρ̄e = 1− 1√
p̄ce

.

Proof. The k-the-index pricing scheme sets the price at utilization ρ to be pro-
portional to the cost at utilization kρ. Based on Theorem 1, as long as ϕe
satisfies the BVP in Equation (6), it will lead to a competitive algorithm. Let
ϕe(0) =

1
ce
, thus ϕe(ρ) =

1
ce(1−kρ)2 , and it is easy to see that ϕe(ρ̄e) ≥ p̄ when

k ∈ [1, 1
ρ̄e
]. Given the value density’s upper bound p̄ and the effective capacities

ρ̄e = 1− 1√
ρce

, for each link e, there must exists a constant αk,e such that

αk,e ≥
ϕ′e(ρ)

(
1− (ceϕe(ρ))

−1/2
)

ϕe(ρ)− 1
ce(1−ρ)2

=

2k
ce(1−kρ)3 · kρ
1

ce(1−kρ)2 −
1

ce(1−ρ)2

,∀ρ ∈ (0, ρ̄e),

αk,e ≥ max
ρ∈(0,ρ̄e)

2k
(1−kρ)3 · kρ
1

(1−kρ)2 −
1

(1−ρ)2

(15)

= max
ρ∈(0,ρ̄e)

2k2ρ(1− ρ)2

(1− kρ)(1− ρ)2 − (1− kρ)3

= max
ρ∈(0,ρ̄e)

2k2(1− ρ)2

(1− kρ)[(1− k2)ρ+ 2(k − 1)]

= max
ρ∈(0,ρ̄e)

2k2

k − 1
· (1− ρ)2

(1− kρ)[2− (k + 1)ρ]

= max
ρ∈(0,ρ̄e)

2k2

k − 1

[
1

k(k + 1)
+

(k − 1)[(k + 2)− (2k + 1)ρ]

k(k + 1)(1− kρ)[2− (k + 1)ρ]

]
= max

ρ∈(0,ρ̄e)

2k

k2 − 1
+

2k

k + 1
· (k + 2)− (2k + 1)ρ

(1− kρ)(2− (k + 1)ρ)
. (16)

We can show that (k+2)−(2k+1)ρ
(1−kρ)(2−(k+1)ρ) is monotonically non-decreasing in ρ ∈ (0, ρ̄e)

by proving that its first-order derivative is nonnegative, which is omitted to-
gether with the proof of αk,e’s convexity later. Thus, the competitive ratio of
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Figure 1: (a) Best competitive ratio of PPM-PSϕ vs. p̄. Link capacity is set to 40. (b) Best
competitive ratio of the MTI pricing vs. ρ̄e.

the k-the-index pricing scheme is

αk = max
e
αk,e = max

e

2k

k2 − 1
+

2k

k + 1
· (k + 2)− (2k + 1)ρ̄e
(1− kρ̄e)(2− (k + 1)ρ̄e)

. (17)

It can be shown that αk,e is convex in k by proving that the second-order
derivative of αk,e with respect to k is non-negative. Setting the first-order
derivative of αk,e with respect to k to zero, we find that αk,e reaches its minima
when k is the second largest real solution to the following cubic equation

ρ̄2ek
3 + (ρ̄2e − 2ρ̄e − 2)k + (4− 2ρ̄e) = 0. (18)

Figure 1(b) shows that when capacity is 40 and p̄ is 5, α∗
MTI is over 40

(ρ̄e ≈ 0.93) while PPM-PSϕ is around 5-competitive (see Figure 1(a)). This
indicates that when the cost function is generally convex but not polynomial,
the MTI pricing is much worse than our proposed online mechanism PPM-PSϕ.

4. Conclusions and Future Works

In this work, we formulated the online path-aware path selection problem
as a mechanism design problem and focused on developing competitive posted-
pricing mechanisms. We established sufficient and necessary conditions on the
pricing scheme to ensure competitiveness and discussed the fundamental per-
formance limits of posted price mechanisms. We also analyzed the MTI pricing
scheme in terms of its best competitive ratio and showed that it is numerically
inferior to our proposed scheme. It could be beneficial to employ our modeling
and analysis approach to enable multipath routing. Additionally, conducting
beyond-worst-case analysis for the addressed problem is also worth exploring.
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