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Network of Electric Vehicle Battery-Swapping

Stations
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Abstract— Battery-swapping stations (BSSs) are one of the
main types of electric vehicle (EV) refueling facilities. By battery
swapping, EVs first replace their depleted batteries (DBs) with
fully charged ones, and then, the demounted DBs can be
recharged in charging facilities in a stand-alone mode, leading to
a decouple between batteries and EVs during refueling. This
article targets the planning and operation of a network of
geographically distributed BSSs, termed BSS-Net. In particular,
we focus on two important decisions being made within two
different timescales, namely, a long-term decision on planning the
initial inventory in each individual BSS and a short-term decision
on real-time vehicle-to-station (V2S) routing of EVs. We formu-
late a two-stage optimization problem and propose a two-step
solution scheme. Specifically, in the first step, we determine the
long-term initial inventory by sample average approximation,
and the resulting planning decision leads to a maximized total
expected revenue for the BSS-Net. Based on the optimal initial
inventory, we design a randomized online algorithm in the second
step to perform real-time V2S routing, without assuming any
future EV arrival information. We rigorously prove that the
worst case performance of the randomized online algorithm is
theoretically bounded by a closed-form competitive ratio.

Index Terms— Battery swapping, choice model, inventory
planning, randomized online recommendation, vehicle-to-station
(V2S) routing.

NOMENCLATURE

Indices:
n Index for customers’ requests in an arrival sequence.
m Index for battery-swapping stations (BSSs).
j Index for price levels of each BSS.
� Index for samples in sample average approximation

(SAA).
Sets:
N Set of EVs submitting requests to the BSS-Net.
M Set of BSSs.
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Jm Set of price level indices in BSS m.
Rm Set of prices in BSS m.
A Set of all possible (station, price) recommen-

dations.
S Set of (station, price) combinations, S ⊆ A.

Parameters:
N Number of customers.
M Number of BSSs.
J Number of price levels in each BSS.

L j
m j th segment border of asymptotic value function

φm .
L̃ j

m j th segment border of discrete value function
φ̃m .

c Competitive ratio in the asymptotic case.
c̃ Competitive ratio in the general case.

r j
m j th smallest price in BSS m.

km Initial inventory in BSS m.
α Charging cost for one unit of fully charged

battery (FB).
βm Cost for delivering one unit of FB to BSS m.
k, k̄ Minimum and maximum numbers of FBs deliv-

ered in one service horizon.
�̄ Number of samples in SAA.

Variables:
p j

n,m(S) Probability of EV n accepting BSS m with price
j given the recommendation S.

xn(S) Binary variable: “1” if the operator recommends
S and “0” otherwise.

x�
n(S) Binary variable: the operator’s recommendation

decision in �th sample in SAA.
km Decision variable: the initial inventory of BSS

m.
φm Asymptotic value function on the continuous

inventory level of BSS m.
φ̃m General (true) value function on the discrete

inventory level of BSS m.
ξ Realization of all of the uncertain information.
ξ� �th sample in SAA.

Vn−1,m Number of FBs consumed in BSS m before the
arrival of EV n.

Ron Total revenue earned by an online algorithm.
λm , μn Dual variables to the primal problem.

Un Pseudorevenue by serving EV n.
wm Continuous fraction of consumed FBs in

BSS m.
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γ Random seed in the randomized procedure,
drawn from [0, 1].

I. INTRODUCTION

MOTIVATED by the increasing concern of environmental
pollution and fossil fuel shortage, transportation elec-

trification, namely, the process of integrating a large fleet
of public and private electric vehicles (EVs) into the trans-
portation system, is conceived to be one of the promising
solutions. For this reason, various EV refueling infrastructures
have been implemented and commercialized all over the
world, e.g., plug-in charging stations [1], [2], and battery-
swapping stations (BSSs) [3], [4]. Compared with the plug-
in charging method, which usually takes hours, EVs with
swappable batteries can replace their depleted batteries (DBs)
with fully charged batteries (FBs) at BSSs within minutes [4].
The replaced DBs can be recharged in a centralized charging
facility (CF) and redistributed to BSSs through logistics. Thus,
battery swapping can work as a complementary method to
plug-in charging to satisfy the EV refueling demand in an
urban city. According to [4]–[6], a well-designed and well-
operated network of BSSs, termed BSS-Net hereinafter, has
been demonstrated to be effective in providing fast driving
range extension services for EVs.

The promising potential of battery swapping has drawn
increasing academic and industrial attention from both the
transportation and power system domains. In particular, exten-
sive studies have investigated the optimal charging scheduling
of DBs in CFs by different modeling techniques (see [5]–
[8]). In these studies, the common objective is to design
charging strategies so that a certain system-wide objective can
be optimized, e.g., cost minimization for the BSS-Net operator
[5], [6] or social welfare maximization for both the power and
transportation networks [7], [8]. However, all the aforemen-
tioned works neglect the key operational decisions in BSS-
Nets, namely, the inventory planning of BSSs and the vehicle-
to-station (V2S) routing of EVs. Specifically, the inventory
planning of BSSs refers to the process of maintaining a
certain initial inventory of FBs for each BSS at the beginning
of the service time horizon (i.e., a long-term decision in
days or even weeks), while the V2S routing represents the
process of directing the FB demands from EVs to different
BSSs in real time (i.e., a short-term decision in minutes or even
seconds). Without a system-wide inventory planning and V2S
routing, EV customers will randomly choose BSSs based on
their own preferences, which may lead to unbalanced loads of
FB requests or even FB shortage. Therefore, a well-operated
BSS-Net necessitates a careful joint decision-making in two
timescales, namely, the long-term inventory planning of FBs
and the short-term V2S routing of EVs in real time.

In practice, the joint decision-making for BSS-Nets is
nontrivial, and the key challenges originate from two types of
uncertainties as follows: 1) the random arrivals of EVs for FBs
in both the spatial and temporal domains and 2) the uncertainty
of the EV customer accepting or rejecting the routing decisions
from the BSS-Net operator. By relaxing the second type of
uncertainty in some cases (e.g., for an EV fleet), the V2S
assignment has been studied in [9]–[11], where the system

operator owns all the EVs and directly assigns each EV to
a refueling station such that a particular system-wide perfor-
mance can be achieved. However, in practice, most private EVs
and even some public EVs (e.g., electric taxis) are usually not
committed to a BSS-Net operator and thus may lack incentives
to cooperate [12]. Therefore, it is interesting yet more practical
to design a V2S routing framework by recommendation with a
probabilistic model of EVs’ decision-making, where each EV
selects refueling stations in a probabilistic manner based on
both the operator’s recommendation and her own preference,
rather than assignment.1

Toward this end, this article aims to tackle the aforemen-
tioned challenges and focuses on making the joint decisions of
inventory planning and recommendation-based V2S routing in
BSS-Nets. In particular, we formulate a two-stage optimization
problem and propose a two-step solution scheme, where the
initial inventory is optimally determined in the first-step that
maximizes the expected long-term revenue of the BSS-Net.
In addition, we consider the scenario where FBs are only redis-
tributed from CFs to BSSs at the beginning of the service time
horizon (e.g., a day), indicating that there is no replenishment
during the entire service time horizon. Based on the optimal
initial inventory obtained in the first step, we propose a ran-
domized online recommendation-based V2S routing algorithm
in the second step, without assuming any future information
(e.g., EV arrival sequence). Leveraging a principled primal–
dual analysis, we rigorously prove the worst case performance
is theoretically bounded by a closed-form competitive ratio
in a general case, which greatly extends our previous results
derived in the asymptotic case [13]. The detailed design and
analysis of our algorithm will be elaborated in Section IV-
D. Before introducing the complete two-step decision-making
scheme, we next present the related work.

A. Related Work

In recent years, extensive studies have focused on the
optimal charging scheduling of batteries in BSS-Nets, as men-
tioned earlier. For instance, Tan et al. [5] investigated the bat-
tery charging schedule in the CF of the BSS-Net to minimize
the total charging cost while fulfilling the FB demand from
BSSs. Specifically, they develop a generalized Benders decom-
position algorithm to solve the charging scheduling problem
efficiently. With an objective to minimize the total charging
cost in BSS-Nets and meanwhile reduce the power loss in
the underlying power networks, Kang et al. [6] presented a
centralized charging scheduling strategy in a centralized CF
by considering the spot electricity prices. Similar results have
also been reported in [7], in which a coordinated charging
scheduling strategy for all the BSSs in a BSS-Net is proposed
so as to mitigate the negative impact of uncoordinated charging
on power distribution networks. In addition, Widrick et al.
[8] described the battery charging and discharging scheduling
problem in BSSs by utilizing the Markov decision process,
which aims to maximize the total expected revenue of the
BSS-Net over a fixed time horizon.

1It is worth pointing out that the recommendation-based routing includes the
assignment-based routing as a special case when the probability of selecting
the recommended refueling station is 1.
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In comparison to charging scheduling in the CF of BSS-
Nets, inventory planning of FBs in BSSs is less studied in
the literature. Nie et al. [14] addressed the battery inventory
management problem among BSSs in the BSS-Net to satisfy
battery demand with the purpose of maximizing the total
revenue, where a binomial distribution of battery demand is
assumed. More recently, a periodic fluid model is proposed
in [15] to jointly solve the BSS battery inventory planning
and charging scheduling problems so as to minimize the total
operational cost under stochastic battery demand and electric-
ity prices. Beyond these works, some studies are performed
to determine the initial inventory of mutually substitutable
products in a general supplier–customer system, which exactly
captures the nature of BSS-Nets. For instance, with the
assumption of Poisson demand arrival rate, Xu et al. [16]
investigated the problem of selling two mutually substitutable
products over a fixed time horizon, where both the selling
rules and initial product inventory are made to maximize the
total revenue. Similarly, Yao et al. [17] focused on the initial
inventory planning problem of a single type of product, which
can be transshipped among different supply companies, and
made joint decisions on the inventory planning and product
transshipment. Different from the abovementioned literature,
we do not assume any distribution of battery demand and
formulate the initial FB inventory planning problem into a
two-stage stochastic programming problem [18], [19], with the
consideration of both system revenue and customers’ personal
preference. Based on the hidden concavity of the formulation,
we can equivalently transform the two-stage stochastic pro-
gramming problem into a single-stage problem and solve it
efficiently.

Other than the charging scheduling and inventory planning,
the real-time V2S routing of EVs is also a key process
during the operation of BSS-Nets. Most of the existing works
contribute to V2S routing via assignment, by which the
vehicles are assumed to follow exactly the assignment deci-
sions. For instance, You et al. [9], [10] investigated the V2S
assignment problem for EV battery swapping and obtained
both the centralized and distributed assignment solutions with
and without global information of BSS-Nets. Specifically,
in [9], a centralized solution is obtained by leveraging the
global information of a BSS-Net, such that the operator can
assign each EV to a particular BSS and minimize a weighted
sum of EVs’ traveling distance and electricity cost. On the
contrary, two decentralized solutions are proposed in [10]
for the cases without global information of BSS-Nets. In
addition, Fanti et al. [11] targeted the V2S assignment for a
group of EVs to minimize the total charging time. Different
from these works, it is also possible to perform V2S routing
from a more practical viewpoint by implementing real-time
V2S recommendations with the consideration of customers’
choice preferences. For example, Guo et al. [20] investigated
the EV spatial scheduling problem by recommending charging
stations to EV customers by considering future EV arrivals and
departures to minimize the total waiting and queuing time.
In addition, Tian et al. [21] provided real-time recommenda-
tions of charging stations to individual electric taxi to minimize
the total waiting time. However, the V2S routing algorithm in

Fig. 1. Network model of the BSS-Net in an urban area.

these works is designed specifically for the plug-in charging
mode. The topic on real-time V2S recommendation for the
battery-swapping mode has rarely been investigated in the
literature. In our previous work [13], we investigate the
online V2S recommendation for battery swapping based on
predetermined initial FB inventories in an asymptotic case,
in which we relax the discrete inventory level of FBs to
a continuous variable, such that an asymptotic performance
metric is obtained by solving an ordinary differential equation.
In this article, we first optimally obtain the long-term inventory
of FBs with the purpose of maximizing the expected system
revenue. Then, we extend the theoretical results in [13] by
considering discrete inventory levels, which is a more practical
and general case. By designing a randomized online V2S
recommendation algorithm, a closed-form competitive ratio is
rigorously proved.

B. Our Contribution

The main contributions of this article can be summarized
as follows. First, we address the operation of BSS-Nets by
jointly optimizing the long-term inventory planning and the
short-term V2S routing, which differentiates our work from
the aforementioned EV charging literature. Second, with the
consideration of customers’ personal choice, we formulate
a two-stage revenue maximization problem to determine the
long-term initial inventory in each BSS, which is highly
nontrivial without assuming any demand distribution. Never-
theless, we optimally solve the initial inventory by equiva-
lently transforming the two-stage problem into a single-stage
problem based on the proven concavity of the formulation.
Third, we design a randomized online V2S recommendation
algorithm based on the optimal initial inventory. Without
relaxing the discrete inventory level to a continuous variable
in our previous work, we rigorously prove a closed-form com-
petitive ratio in a general case. To the best of our knowledge,
the proposed algorithm is the first to achieve optimal initial
inventory and closed-form competitive ratio simultaneously in
a general BSS-Net.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we present the detailed BSS-Net model and
describe the joint decisions on inventory planning and real-
time V2S routing in the BSS-Net.
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A. Network Model

We consider a BSS-Net in an urban area as shown in Fig. 1,
where the BSS-Net operator owns a group of BSSs providing
battery-swapping services to a population of EV customers,
who can adopt battery swapping as their refueling method.
Let M � {1, . . . , M} denote the set of BSSs, which are
geographically distributed in different locations. The set of
EVs that submit battery-swapping requests to the BSS-Net is
denoted by N � {1, . . . , N}, which are indexed based on
their arrival sequences. The operator jointly makes decisions
on planning the initial inventory in BSSs and the real-time V2S
routing, serving EVs in a fixed service time horizon (e.g., one
day) to maximize the expected total revenue.

B. Inventory Planning

We denote the initial FB inventory of BSS m ∈ M by
km , which needs to be determined before starting to provide
battery-swapping services. As shown in Fig. 1, the FBs are
delivered from a centralized CF, which collects DBs from all
BSSs and fully charges them for the next dispatch, with both
charging and delivery costs. We consider that FBs are delivered
to BSSs only at the beginning of the service time horizon
(e.g., the night before the next day), namely no replenishment.
After preparing the initial inventories, each BSS can provide
battery-swapping service to EVs with different price levels.
In particular, let Rm � {r1

m, . . . , r Jm
m } be the possible price

levels of BSS m and Jm � {1, . . . , Jm} be the index set of
price levels. Without loss of generality, the different levels
of prices are ranked from low to high with the increase of
indexes.

C. Online V2S Routing

We assume that the BSS-Net operator is capable of com-
municating with all the EVs and aims to maximize the total
revenue of the BSS-Net by strategically performing the V2S
routing decisions in real time. The interactions between the
operator and the EVs are as follows.

1) Request: EV n ∈ N submits a battery-swapping request
to the BSS-Net operator in real time. While submitting
the request, each EV has its unique identity information
(e.g., time, location, and customer ID), which can be
identified by the operator.

2) Recommendation: Upon receiving the request from EV
n, the BSS-Net operator estimates the EV’s choice
probability p j

n,m(S),∀S ⊆ A. The process of obtain-
ing p j

n,m(S) will be explained in detail by the case
study in Section V. After that, the operator makes
V2S recommendation to EV n in a complete online
fashion without assuming any future information (e.g.,
EV arrival sequence and the total number of EVs).
Based on the current EV’s choice probability and the
system state (i.e., the remaining FBs at all the BSSs),
the BSS-Net operator aims to maximize the expected
revenue by recommending an appropriate subset S ⊆ A
of (station, price) combinations to each EV n. Note
that the operator is supposed to respond to customers’

requests immediately based on the arrival sequence of
requests. However, the response to a customer’s request
can be delayed when multiple requests appear in a very
short time. In this case, the operator needs to wait
a few seconds for all previous customers’ choices on
their recommendations and consider no response as a
rejection decision. When the total number of requests
becomes very large, we consider the scenario that the
operator responds to a request with a fixed deadline.
This scenario is discussed in detail in Section V-G.

3) Choice-Making: After receiving the recommendation S,
EV n selects one of the combinations (m, j) ∈ S with
the probability of p j

n,m(S) within a time window (several
seconds). In particular, if EV n selects the combination
(m, j), the inventory level in BSS m decreases by 1,
and the BSS-Net earns a corresponding revenue r j

m .
Otherwise, EV n is considered to reject all the recom-
mendations and chooses alternative refueling methods.
Here, the choice-making of each customer (i.e., EVs in
our context) in a probabilistic manner is common in
the revenue management literature [22]–[25]. According
to these existing studies, we assume that the choice
probability p j

n,m(S) can be obtained from an online
contextual learning process based on big data analytics,
and the detailed learning process is beyond the scope of
this article. In the present work, we assume that the EVs’
choice probability is a given priori. Note that the basic
setting for the part of real-time V2S routing is similar
to [13]; however, we extend the theoretical results in a
more general case, which will be explained in detail in
Section IV-D.

III. INITIAL INVENTORY PLANNING

In this section, we focus on the initial inventory planning
with the objective to maximize the expected total revenue of
the BSS-Net.

A. Offline Formulation for V2S Recommendation Problem

We consider the BSS-Net operator as an independent refu-
eling service provider, which does not own or manage the
EV fleet. The ultimate goal of the operator is to maximize its
expected total revenue before the next replenishment of FBs.
Therefore, we start from formulating an offline revenue max-
imization problem by assuming the knowledge of all future
uncertainties of EV arrivals. Here, a random realization of the
uncertainties is summarized in ξ � {N , {p j

n,m(S)}S,n,(m, j )},
including all EVs’ arrival sequence N and the probability
p j

n,m(S) for any EV n to accept the combination (m, j) given
the recommendation set S.

Given any initial inventory km in each BSS m, the offline
revenue maximization problem is formulated as follows:

R(k, ξ) � max
xn(S)

∑
n∈N

∑
S⊆A

xn(S)
∑

(m, j )∈S

r j
m p j

n,m(S) (1a)

s.t.
∑
n∈N

∑
S⊆A

xn(S)
∑
j∈S

p j
n,m(S) ≤ km ∀m ∈M

(1b)
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∑
S⊆A

xn(S) ≤ 1 ∀n ∈ N (1c)

xn(S) ≥ 0 ∀n ∈ N ∀S ⊆ A (1d)

where xn(S) is the decision variable representing the prob-
ability that the operator recommends S to EV n based
on the current inventory level. Note that in the objective,∑

(m, j )∈S r j
m p j

n,m(S) is the expected revenue by recommend-
ing S ⊆ A to EV n. Constraint (1b) restricts the number
of consumed FBs in each BSS by its initial FB inventory.
Constraint (1c) further restricts that the sum of probabilities
of making different recommendations is no greater than 1.
Note that the algorithm may offer no recommendations when
constraint (1c) is not binding. Problem (1) is a linear program,
whose optimal objective value is denoted by R(k, ξ).

B. Two-Stage Stochastic Programming Problem

Recall that our BSS-Net consists of a single CF and M
BSSs. The per-battery charging and delivery cost from the CF
to BSS m is assumed to be α and βm , respectively. Meanwhile,
we also assume that the maximum (minimum) number of FBs
that can be delivered is denoted by k (k). We then formulate
the long-term initial inventory planning problem as a two-stage
problem as follows:

max
km

E[R(k, ξ)] − α
∑

m∈M
km −

∑
m∈M

βmkm (2a)

s.t. k ≤
∑

m∈M
km ≤ k (2b)

km ≥ 0 ∀m ∈M (2c)

where R(k, ξ) is the optimal objective value of Problem (1).
Note that Problems (1) and (2) contribute to a two-stage

stochastic programming problem, which is typically compu-
tationally cumbersome [26]. In particular, in the first stage,
the decision variable k has to be chosen before a particular
realization ξ is observed, whereas in the second stage, the deci-
sion x j

n,m(S) is made after the observation of the realization
ξ and depends on the first-stage decision k. In the following,
we refer to Problem (2) as the first stage and Problem (1) as
the second stage. To efficiently solve this two-stage stochastic
programming problem, we propose the following Proposition 1
regarding the concavity of R(k, ξ). Here, k is relaxed as a
continuous variable.

Proposition 1: R(k, ξ) is concave over k ∈ K, where K is
the feasible set of the initial inventory in Problem (2).

The proof of Proposition 1 is explained in [27, Appendix A],
due to the space limit.

C. Sample Average Approximation

In Section III-A, the uncertainties of EV arrivals are mod-
eled as a random variable ξ . In reality, we possibly have an
infinite number of possible realizations; thus, it is difficult
to know the exact probability (distribution) of ξ . To deal
with this difficulty, a common approach is to reduce the
scenario set to a manageable size by using the Monte Carlo
simulation [28]. Specifically, we can randomly generate a
sample set ξ � {ξ1, . . . , ξ�̄}, where each sample ξ� ∈ ξ is

assumed to be independent and identically distributed. The
expectation term E[R(k, ξ)] in the first stage (2a) can then
be approximated by the sample average approximation (SAA)
method, E[R(k, ξ)] = 1/�̄

∑�̄
�=1 R(k, ξ�). Here, the law of

large number can be applied when �̄ is sufficiently large.
In our problem, the sample set ξ can be derived from the
historical data. Based on Proposition 1 and the aforementioned
SAA technique, we can transform the two-stage stochastic
programming problem in (1) and (2) into a solvable single-
stage problem as follows:

max
k,x�

n(S)

1

�̄

�̄∑
�=1

∑
n∈N

∑
S⊆A

x�
n(S)

∑
(m, j )∈S

r j
m p j

n,m(S)

− α

M∑
m=1

km −
M∑

m=1

βmkm

s.t. (1b)− (1d), (2b)− (2c) (3)

where x�
n(S) is the recommendation decision for the sample

ξ�. We can observe that Problem (3) is a linear program,
which can be efficiently solved by commercial solvers even
in a practical large-scale BSS-Net. Based on the optimal
inventory solution k∗, we next present the real-time V2S
recommendation.

IV. ONLINE V2S RECOMMENDATION

In this section, we propose a randomized online V2S
recommendation algorithm based on the value of obtained
optimal initial inventory and rigorously prove its worst case
performance guarantee.

A. Statement of the Online Algorithm

The basic idea behind our online V2S recommendation
coincides with the relationship between supply and demand
in economics. When the supply level is high (adequate FBs),
the operator tends to use low selling prices to serve the
FB demand. Once the supply level decreases, the operator
becomes more conservative to serve demand by high prices.
In that case, the operator can reserve some FBs for possible
future customers that can accept higher prices to make more
profits. Other important factors (such as traffic conditions) that
impact the V2S routing decisions are captured by customers’
choice probability. Based on customers’ choice probability,
we estimate the expected revenue for all possible recommenda-
tions and provide an appropriate recommendation to maximize
the expected revenue.

Therefore, we set a threshold price for using one unit of
remaining FBs, which is commonly called bid price. Intu-
itively, when the remaining inventory decreases, the potential
value of one unit of FBs increases. In [13], a piecewise
increasing value function φm is designed based on the relax-
ation of continuous inventory levels, which is the bid price
function in an asymptotic case. Hereinafter, we will use a value
function to indicate the bid price function. Specifically, with
the assumption of infinite initial inventories, the asymptotic
value function φm is defined on a continuous fraction of
remaining inventory for each BSS m ∈ M and segmented
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Algorithm 1 Two-Step Online Recommendation Algorithm
1: Inventory Planning: Compute optimal inventory k∗m by

solving (3). Set km ← k∗m, V0,m ← 0, m ∈M.
2: Randomized: {L̃ j

m} j∈J , φ̃m ,∀m ∈M,
3: for n = 1, 2, . . . , N do
4: Compute S∗ by solving (4),

max
S∈A

∑
(m, j )∈S

p j
n,m(S)

(
φ̃(L̃ j

m)− φ̃(
Vn−1,m

km
)
))

, (4)

5: if the optimal value of (4) is strictly positive then
6: Recommend S∗ to EV n.
7: if customer n accepts any option (m∗n, j∗n ) ∈ S∗ then
8: Ron← Ron + r

j∗n
m∗n .

9: Vn,m∗n ← Vn−1,m∗n + 1.
10: end if
11: else
12: Offer no recommendation.
13: end if
14: end for

by a group of segment borders {L j
m} j∈Jm . However, in that

case, the true value of the initial inventory is neglected with
only asymptotic theoretical results derived, which is explained
in detail in Section IV.

In comparison, we consider a more general case for finite
initial inventory, which is consistently set as the optimal
solution of (3). Based on the aforementioned design logic,
we design a discrete piecewise increasing value function
φ̃m, m ∈ M over a discrete fraction of remaining inventory,
namely, a multiple of 1/km . Furthermore, the discrete value
function φ̃m is segmented by a group of segment borders
{L̃ j

m} j∈Jm , which only take value as multiples of 1/km , such
that 0 = L̃0

m ≤ · · · ≤ L̃ J
m = 1 and 0 = φ̃m(L̃0

m) ≤ · · · ≤
φ̃m(L̃ J

m). Here, a strong intuition is to design φ̃m and L̃ j
m

based on the asymptotic results φm , L j
m , m ∈ M. However,

the fact that asymptotic segment border L j
m has no need to be

a multiple of 1/km hinders us from directly using L j
m as the

segment border. Therefore, a randomized procedure is needed
to handle the rounding error from L j

m to L̃ j
m , which will be

explained in detail in Section IV-C. Interested readers can
also refer to [13] for more about the derivation of asymptotic
φm and L j

m . We next present the details of a two-step online
recommendation algorithm in Algorithm 1 (ALG-1).

In Algorithm 1, the initial inventory is set as the optimal
solution k∗m, m ∈M of (3), and V0,m is initialized to be 0 for
all BSSs. The detailed randomized procedure mentioned in
Line 2 is present in Section IV-D. In (4), the pseudorevenue
is measured based on the value on segment border φ̃m(L̃ j

m)
and value of per-unit remaining FBs φ̃m(Vn−1,m/km) before
serving customer n. The expected pseudorevenue is maxi-
mized in order to offer recommendation S∗. In the following,
we show that the performance of ALG-1 is theoretically
guaranteed when the value function φ̃m,∀m ∈ M, is wisely
designed.

B. Performance Metric and Dual Formulation

The value function φ̃m,∀m ∈ M, is designed through
a principled online primal–dual analysis (see [29], [30]).
Before the analysis, we introduce the definition of competitive
ratio, which works as the performance metric of the online
V2S recommendation algorithm to quantify the worst case
performance. In the following, we give a formal definition
of the competitive ratio.

Definition 1: An online V2S recommendation algorithm is
c̃-competitive if Ron ≥ c̃ · OPT holds for all possible future
EV arrivals, where OPT is the maximal total revenue obtained
by knowing all the future information.

Note that c̃ ∈ [0, 1] is a constant, and c̃’s getting closer to
1 means the online algorithm achieving better performance.
Utilizing the competitive ratio as our online algorithm perfor-
mance metric, {φ̃m}∀m∈M can be derived through the online
primal–dual analysis of Problem (1), which works as the
primal problem. The dual problem of (1) is stated as follows:

min
λm,μn

∑
m∈M

kmλm +
∑
n∈N

μn (5a)

s.t.
∑

(m, j )∈S

λm p j
n,m(S)+ μn ≥

∑
(m, j )∈S

r j
n p j

n,m(S)

∀n ∈ N ∀S ⊆ A (5b)

λm , μn ≥ 0 ∀m ∈M ∀n ∈ N (5c)

where λm , m ∈ M and μn, n ∈ N are the dual variables
related to (1b) and (1c), respectively. Based on the primal
problem (1) and the dual problem (5), we have the following
Lemma 1 and defer its proof in [27, Appendix B].

Lemma 1: If there exists a constant 0 < c̃ ≤ 1 such that
the following increment inequality holds:

Pn − Pn−1 ≥ c̃ · (Dn − Dn−1) ∀n ∈ N (6)

then the online algorithm is c̃-competitive, where Pn and Dn

are, respectively, the primal and dual objective values of the
online algorithm after serving the nth customer.

C. Online Primal-Dual Analysis

Based on Lemma 1, we analyze the design principle of
Algorithm 1 and propose Theorem 1.

Theorem 1: If the value function φ̃m ,∀m ∈ M, n ∈ N ,
satisfies (7) and (8), then ALG-1 is c̃-competitive

km

(
φ̃m

(
Vn−1,m + 1

km

)
− φ̃m

(
Vn−1,m

km

))
+ φ̃m

(
L̃ j

m
)

− φ̃m

(
Vn−1,m

km

)
≤ r j

m

c̃
(7)

E
[
φ̃

j
m
(
L̃ j

m
)] ≥ r j

m . (8)

The proof for Theorem 1 is elaborated through standard
online primal–dual analysis, which follows a similar logic in
[13] until the derivation of a sufficient condition to guarantee
the increment inequality shown in Lemma 1. Due to space
limit, we defer the detailed proof of Theorem 1 in [27,
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Appendix C] and only introduce the main logic here to give
some intuition. Different from [13], ALG-1 generates dual
variables λm = E[φ̃m(VN,m/km)] and μn = E[Un], where
Un can be interpreted as the pseudorevenue earned by serving
EV n. If EV n chooses one recommendation (m, j), then
Un = φ̃m(L̃ j

m)− φ̃m(Vn−1,m/km), ∀(m, j) ∈ S∗; otherwise,
Un = 0. Thus, the pseudorevenue is ensured exactly zero by
recommending (m, j) when the consumed fraction of initial
inventory reaches L̃ j

m . To prove Theorem 1, we first elaborate
that dual variables generated by ALG-1 are feasible when (8)
is satisfied. Next, we complete the proof by showing that the
primal and dual objectives Pn and Dn achieve the increment
inequality (6), if (7) holds.

D. Value Function and Competitive Ratio

Now, we only need to focus on how to design the value
function φ̃m, m ∈M to ensure the validity of (7) and (8).

1) Asymptotic: The design of φ̃m based on Theorem 1 for a
finite value of km, m ∈M is non-trivial, as it is very challeng-
ing to directly obtain the segment border L̃ j

m . However, when
km approaches infinity, we can asymptotically derive a group
of continuous segment border L j

m , m ∈M and a continuous
asymptotic value function φm . Therefore, we first introduce an
asymptotic case when km →∞ [13], such that (Vn−1,m/km)
can be represented by a continuous variable wm . The dual
variable Un is set as r j

m−φm(Vn−1,m/km) since φm(L j
m) = r j

m .
We then rewrite (7) as the following differential equation:

φ�m(wm)− φm(wm) ≤ r j
m

(
1

c
− 1

)
. (9)

We solve (9) on each segment wm ∈ [L j−1
m , L j

m) by binding
the inequality. With initial conditions φm(L j−1

m ) = r j−1
m

and φm(L j
m) = r j

m , we obtain an asymptotic value function
φm, m ∈M as

φm(wm) = r j
m − r j−1

m

eL j
m−L j−1

m − 1

(
ewm−L j−1

m − 1
)+ r j−1

m , (10)

where φm is an asymptotic function to the true value function
φ̃m when the initial inventory km is extremely large. c and
{L j

m} j∈Jm are derived by setting the value of (11) equal for
all j ∈ Jm such that c can be maximized

1− e−L1
m = 1− eL j−1

m −L j
m

1− r j−1
m

/
r j

m

(11)

c = min
m

1− e−L1
m (12)

where the value of c is irrelevant to km, m ∈M.
2) Randomized: Based on the results in asymptotic case,

we investigate a more general case, where km, m ∈ M
takes finite values. Specifically, we design a discrete value
function φ̃m, m ∈M, which only takes value from a discrete
set q ∈ {0, 1/km, 2/km , . . . , 1}. Inspired by the design of
φm(wm), we divide the range of q into different segments
[L̃ j−1

m , L̃ j
m),∀ j ∈ Jm . The new segment border L̃ j

m can be
calculated by rounding L j

m to a value of a multiple of 1/km .
However, the random rounding error from L̃ j

m to L j
m greatly

increases the difficulty in deriving a closed-form competitive
ratio c̃. Thus, we need to properly design a randomized pro-
cedure to locate {L̃ j

m} j∈J and obtain the corresponding value
function φ̃m(q) such that ALG-1 can achieve a competitive
ratio c̃, which is related to the value of km, m ∈M.

Inspired by [25], we start a randomized procedure by using
a random seed γ uniformly drawn from [0, 1] to capture the
randomness in rounding error from L̃ j

m to L j
m and proceed to

design φ̃m based on φm , m ∈M. The randomized procedure
is stated as follows.

1) For ∀ j ∈ Jm , m ∈M, L̃ j
m = �L

j
mkm+1

km
, if γ < L j

mkm−
�L j

mkm. Otherwise, L̃ j
m = ((�L j

mkm)/km).
2) For q ∈ [L̃ j−1

m , L̃ j
m), the randomized value function is

then set as

φ̃m(q) =
j−1∑
g=1

(
	

g
m
)eh̃g

m − 1

ehg
m − 1

+ (
	

j
m
)eq−L̃ j−1

m − 1

eh j
m − 1

(13)

where h j
m = L j

m − L j−1
m , h̃ j

m = L̃ j
m − L̃ j−1

m , and
	

j
m = r j

m − r j−1
m , j ∈ Jm for notational conve-

nience. By randomly rounding error between L̃ j
m and

L j
m , the value φ̃(L̃ j

m) has a cumulative deviation from
φm(L j

m). We capture this deviation from random round-
ing by the first term of (13). If we replace {L̃ j

m} j∈Jm by
{L j

m} j∈Jm , (13) immediately recovers (10).

Next, we move on to verify that procedures 1) and 2) satisfy
(7) and (8) in Theorem 1 by the following two steps.

1) We prove the satisfaction of (8) inductively. First, we can
observe that φ̃m(L̃0

m) = r0
m = 0. By assuming (8) that

holds for j − 1 and substituting q = L̃ j
m and q =

L̃ j−1
m into (13), we can derive φ̃m(L̃ j

m) = φ̃m(L̃ j−1
m ) +

(	
j
m)((eh̃ j

m − 1)/(eh j
m − 1)). Thus, we have

E
[
φ̃
(
L̃ j

m
)] ≥ r j−1

m + (
r j

m − r j−1
m

)eE

[
h̃ j

m

]
− 1

eh j
m − 1

= r j
m

(14)

where the equality holds for E[L̃ j
m ] =

((�L j
mkm + 1)/km)(L j

mkm − �L j
mkm) +

((�L j
mkm)/km)(1 − L j

mkm + �L j
mkm) = L j

m such that
E[h̃ j

m] = h j
m . Therefore, we prove the satisfaction of

(8).
2) Next, we validate (7) by substituting (13) and q =

(Vn−1,m/km) into the left-hand side of (7). For q ∈
[L̃ j−1

m , L̃ j
m), we obtain

km

(
φ̃m

(
q + 1

km

)
− φ̃m(q)

)
+ φ̃m

(
L̃ j

m
)− φ̃m(q)

= 	
j
m

eh j
m−1

(
(km−(1+km)e−1/km )eq+ 1

km
−L̃ j−1

m +eh̃ j
m−1

)

≤ 	
j
m

eh j
m − 1

((
km − (1+ km)e−

1
km

)
eh̃ j

m + eh̃ j
m
)

(15)

≤ 	
j
m

1− e−h j
m

e
1

km (1+ km)
(
1− e

−1
km

)
(16)
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Fig. 2. Illustration of a Hong Kong map with 18 districts.

= r j
m

(1+ km)
(
e

1
km − 1

)
(
1− e−L1

m
) (17)

where the inequality (15) holds for km − (1 +
km)e−1/km ≥ 0 and eq+(1/km) ≤ eL̃ j

m . Inequality (16)
holds for the fact |h̃ j

m − h j
m | ≤ (1/km), which can be

easily obtained from 1). The equality (17) is derived
by (11). Therefore, we can validate (7) and derive the
competitive ratio c̃ according to (7) and (17) as

c̃ = min
m∈M

(
1− e−L1

m
)

(1+ km)
(
e

1
km − 1

) . (18)

Note that limkm→∞(1 + km)(e(1/km) − 1) = 1, and we can
immediately recover c from c̃ when km →∞.

V. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
two-step scheme based on a case study of Hong Kong (HK),
by showing the empirical performance of our scheme in
different cases and comparing it to other benchmarks.

A. Setup of the Case Study

1) Setup of the BSS-Net Model: We consider a BSS-Net
based on a simplified transportation network of HK, including
a total of 18 districts, 32 main roads, four BSSs, and one
centralized CF, as shown in Fig. 2. We provide battery-
swapping services for an electric taxi company covering all
three areas (New Territories, Kowloon, and HK Island) of HK,
where all batteries are uniform with a capacity C = 80 kWh.
The battery-swapping prices in each BSS are computed based
on the battery capacity and the electricity price in each area of
HK (1.119 HKD/kWh for HK Island and 0.884 HKD/kWh for
New Territories and Kowloon), which are shown in Table I.
Specifically, the price is defined as the product of the elec-
tricity cost of charging the battery and a profit factor. In this
article, we use 1.4 and 1.8 as the profit factors of low and
high prices in each BSS.

2) Setup of the Choice Model: We set up the choice model
of EV customers in our case study based on the multinomial
logit model [22]–[24]. First, we model the preference of EV
n to combination (m, j) as

p̃ j
n,m = θ0

n + θ1
n

/
dn,m + θ2

n

/
(rm, j )

2 (19)

TABLE I

SETTINGS OF BATTERY PRICES (HKD) IN THE FOUR-BSS SYSTEM

Fig. 3. Population density of 18 districts.

which indicates an inversely proportional relationship to
driving distance dn,m and price r j

m . The parameters (θ0
n , θ1

n , θ2
n )

are uniformly drawn from [0, 1], [5, 20], [10 000, 20 000].
Given a recommendation S, the probability for EV n to choose
(m, j) from S is estimated as

p j
n,m(S) = e p̃ j

n,m

∑
(m, j )∈S e p̃ j

n,m + e p̃n,0

(20)

where p̃n,0 is the preference for EV n to accept no recom-
mendation, derived by setting θ1

n = θ2
n = 0.

3) Setup of EVs’ Arrival Instance: All the following numer-
ical tests are implemented on EVs’ arrival instances ξ �
{N , {p j

n,m(S)}S,n,(m, j )}. We estimate the average total number
of EVs by a nominal value 2000 multiplied by a loading
factor (LF) ρ, which can be interpreted as the average num-
ber of EV customers for one unit of initial FBs, such that
the realized total number N is a Poisson random variable
with mean 2000ρ. The probability of an EV appearing in
a particular district y, denote by P

y
n , is estimated according

to the normalized population densities of the 18 districts of
HK which are visualized in Fig. 3. The probability of an EV
appearing at the streets e ∈ E(y) connected to the district
y is calculated as P

y,e
n = (Ge/(

∑
e∈E(y) Ge))P

y
n , where Ge

is the street length observed from Google map data. Also,
we estimate the exact location of the EV on street e by an
uniform distribution U(g),∀g ∈ [0, Ge]. Therefore, we can
generate the driving distance dn,m , m ∈ M. Based on (20),
we can obtain a complete EVs’ arrival instance ξ .

B. Optimal Initial Inventory

To determine the optimal initial inventory in the first step
of our two-step scheme, we apply SSA by generating a large
number of EVs’ arrival instances. Specifically, a total of �̄ =
100 instances are considered in (3), for any customer size
N with ρ ∈ {0.75, 0.8, . . . , 1.2}, to obtain the corresponding
optimal initial inventories, which are shown in Fig. 4. If the
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Fig. 4. Initial inventory for different LFs.

BSS-Net operator has a good prediction of the customer size
for the next service horizon, then the corresponding results
can be used to build up the initial inventory. Note that the
uncertainty of EV customer size in the online algorithm is
captured by tuning LF.

C. Performance Comparison With Other Benchmarks

1) Revenue Comparison: We set the initial inventory as the
optimal solution for N = 2000 obtained in Section V-B, which
are (155, 445, 557, 591). We compare the average overall
revenue between Algorithm 1 and two benchmark online
algorithms: ALG-Conservative and ALG-Aggressive, which
always recommend feasible BSSs with low prices and high
prices without considering the inventory level, respectively.
Specifically, we calculate the average revenue of different LFs
for 50 times. Within each time, we generate ten instances for
LFs ρ ∈ {0.75, 0.8, . . . , 1.2} and then calculate the corre-
sponding average. We present the revenue results in Fig. 5(a),
where ALG-1 significantly outperforms other benchmarks.

2) Empirical Ratio Comparison: We further measure the
performance of three algorithms by an empirical ratio
Ron/OPT, where Ron is the total revenue for an online algo-
rithm in one instance and OPT represents the corresponding
revenue upper bound obtained from (3). We compare the aver-
age empirical ratio of ten instances for ρ ∈ {0.75, 0.8 . . . , 1.2}
in Fig. 5(b). From the testing results, ALG-1 achieves a
greater empirical ratio for a wide range of LFs. Note that
for ALG-Aggressive, the empirical ratio gets close to 1 when
LF becomes large enough. This is reasonable since ALG-
Aggressive can serve all EVs with high prices when the
customer size is very large. Furthermore, we can notice that
the empirical ratio is much greater than the theoretical result
shown in (18), which indicates that our online algorithm works
well in practice.

D. Performance Comparison With Assignment-Based V2S
Routing

In this section, we compare the system revenue and average
traveling distance between our proposed recommendation-
based V2S routing method and the assignment-based V2S
routing aforementioned in Section I. The assignment-based
routing can be regarded as a special case of recommendation-
based routing, where the probability of accepting the assigned
(station, price) is 1. With the same settings of customer size

Fig. 5. Performance comparison between online algorithms. (a) Average
overall revenue. (b) Empirical ratio.

Fig. 6. Performance comparison with assignment-based V2S routing.
(a) Overall revenue. (b) Traveling distance.

and initial inventory in Section V-C, we first show the overall
system revenues of the assignment- and recommendation-
based methods in Fig. 6(a). We can observe that the revenue
of the assignment-based method is greater since customers
always accept the (station, price) assignments and more FBs
are consumed than the recommendation-based method. How-
ever, when the customer size becomes larger, more recommen-
dations are accepted in the recommendation-based method,
and the overall revenue gets closer to the assignment-based
one. Fig. 6(b) shows the average traveling distances for the
two methods. We can see that the distance in the assignment-
based method is much larger since customers have to accept
the assignment even if the distance is long.

E. Performance of the Two-Step Scheme for Different
Demand Patterns

In this section, we compare the performance of our two-
step scheme for different battery-swapping demand patterns.
We consider the scenario of unbalanced demand when there
is a big event in the stadium in HK Island. In this case, EVs
(electric taxis) concentrate on HK Island. Thus, the FB stock
in BSS D is rapidly consumed. In addition, the EVs in HK
Island are unwilling to pass through the harbor tunnel between
HK Island and Kowloon to get FBs in BSSs A–C and may
choose other refueling methods (e.g., plug-in charging). For
the scenario of balanced demand, EVs appear in the three areas
of HK based on local population densities, as shown in Fig. 3.
With the same settings of customer size and initial inventory
in Section V-C, we first show the average recommendation
acceptance rate of EVs in Fig. 7(a). We can observe that the
EVs in the case of unbalanced demand have a lower rate of
accepting the recommendations from the operator since most
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Fig. 7. Performance comparison for different demand patterns. (a) Acceptance rate. (b) Traveling distance. (c) Overall revenue.

TABLE II

AVERAGE COMPUTATION TIMES FOR INITIAL INVENTORY PLANNING AND

V2S RECOMMENDATION

of the EVs either choose BSS D or reject the recommendation.
Furthermore, the average traveling distance in the case of
unbalanced demand is greater than that in the case of balanced
demand because some EVs probabilistically choose to travel
long distances across areas to get FBs in BSSs A–C. The
overall system revenue under balanced demand is significantly
better than that under the unbalanced demand based on the
fact that more FBs are consumed in the BSS-Net. The results
of average traveling distance and overall revenue are shown
in Fig. 7(b) and (c), respectively.

F. Scalability Illustration

In order to show the scalability of our method for larger
systems, we have performed additional simulations on 8-BSS
and 12-BSS systems, as shown in Fig. 8. With the same
settings of customer size and LFs in Section V-C, we show
the computation times for the long-term initial inventory and
short-time V2S recommendation in Table II and the overall
system revenue and average traveling distance for an EV
customer in the 4-BSS, 8-BSS, and 12-BSS systems in Fig. 9.

From Table II, we can observe that the decision of real-
time recommendation for a customer can be made very fast in
different scales of systems. The computation time of the initial
inventory planning is several hours for the 12-BSS system,
which is acceptable since the decision on the initial inventory
is made in an offline manner (e.g., day-ahead or week-ahead).
Fig. 9(a) shows that the overall system revenues in the 8-BSS
and 12-BSS systems are greater than that of the 4-BSS system
since the customers have more choices and are more willing
to accept the recommendation. However, the revenues in the
8-BSS and 12-BSS systems are close due to the total number
of districts in HK that is limited to 18. Fig. 9(b) shows
that the average traveling distances in the 8-BSS and 12-BSS
systems are smaller than that in the 4-BSS system, as EVs have
more choices to choose nearby BSSs. Similarly, the traveling

Fig. 8. (a) 8-BSS and (b) 12-BSS systems based on an HK map.

distance in the 12-BSS system is slightly smaller than that of
the 8-BSS system.

G. Discussions on the Operator’s Response Delay

In this section, we discuss the scenario when the total
number of requests becomes very large and multiple requests
arrive in a very short time. In practice, the operator will ask the
customers to respond to the recommendations within a time
window and consider no response as a rejection decision. Since
it may take quite a long time to receive all the responses from
all previous requests, the operator needs to set an appropriate
deadline τ (e.g., a few seconds or even zero) to respond to each
request. In this way, the operator will make recommendations
to each request within τ . When the total number of requests
is small, the responses from all previous customers can be
received within τ with high probabilities and our algorithm
can ensure the competitive ratio theoretically. When the total
number of requests is large, although the operator may not
receive the responses from all customers, the operator can
still make recommendations based on the current system
state. Since in this case, the initial inventory is relatively
large (determined in the long-term initial inventory planning
problem), the system state does not change a lot before and
after the unreceived responses are considered. Thus, the result-
ing recommendation decision can be a reasonably good one.
To show this, we numerically compare the performances of
two algorithm implementations. In the first implementation,
the operator makes recommendations only after receiving
all the responses. This design has a theoretical performance
guarantee but needs a long time to make recommendations
for each request. In the second implementation, the operator
makes recommendations to each request within a deadline
τ = 0. We compute the system revenues in both cases for
a total of 2000δ requests, δ ∈ {1, 2, . . . , 10}, where a batch of
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Fig. 9. Comparison for different scale systems. (a) System revenue.
(b) Traveling distance.

Fig. 10. Comparison of revenues in the cases with and without response
delay.

50δ requests arrive at the same time and a total of 10 batches
are considered in one day. The comparison results of revenues
are shown in Fig. 10. We can observe that the revenues in the
two cases are very close. The average revenue decrease in the
case with a deadline τ = 0 compared to that in the case with
all responses received is only 5.39%.

VI. CONCLUSION

In this article, we investigated the two-timescale decision-
making problem of a BSS-Net in an urban area and designed
a two-step scheme to jointly optimize the initial inventory
planning of BSSs and the real-time V2S routing of EVs.
In particular, we first determined the long-term initial inven-
tory in each BSS by optimally solving a two-stage stochastic
programming problem. Based on the obtained optimal ini-
tial inventory, we proposed a real-time V2S routing strategy
through a two-step online algorithm. Compared with existing
work in an asymptotic case, we investigate a more general case
considering the discrete nature of the value function. Specifi-
cally, we designed a randomized procedure and an associated
online algorithm, where the worst case performance of the
proposed algorithm is proved to be theoretically guaranteed
by a closed-form competitive ratio. Furthermore, we conducted
a case study in a simplified HK transportation network, and
the numerical results demonstrated that we can obtain the
initial inventory for different customer sizes so as to maximize
the expected revenue of the BSS-Net. Meanwhile, it is also
validated by our simulations that the proposed two-scheme is
scalable and achieves better performance compared with other
benchmarks.
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